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ABSTRACT 

Despite the fact that there are well-established object detection methods that are based on images, 

the application of these approaches to video data on a frame-by-frame basis has two major 

drawbacks. One is inefficiency in terms of processing caused either by redundant information across 

image frames or by the absence of temporal and spatial correlation of features across image frames. 

And other is not being able to cope with the challenges of everyday utilization, such as motion blur 

and occlusion. In order to capture both temporal and spatial correlation of features, we proposed an 

improved SSD algorithm called DenseNet – SSD. From the experimental analysis, it is explained 

that our proposed object detection model gives better result. 
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INTRODUCTION  

Many different computer vision tasks, including image classification, object recognition, semantic 

segmentation, human position estimation, and many others, have seen widespread applications of 

deep learning. Improvements in object detection on ImageNet and PASCAL VOC have been made 

possible by the evolution of deep convolutional neural networks during the past few years. Two of 

the most widely used computer vision benchmarks are ImageNet and PASCAL VOC. The most 

advanced techniques for object recognition are used to teach CNNs to identify proposed regions of 

an image as either background or one of the object classes. On the other hand, these methods 

concentrate on finding things in static images. It is becoming increasingly vital to automatically 

extract relevant information from video surveillance systems as more and more video surveillance 

systems are being deployed across a wide range of locations. However, the existing monitoring 

system does not provide the target identification capability, which is particularly important for the 

case that was presented. The purpose of this paper is to offer a framework based on deep learning 

that can detect the objects specified from video. 

 

Targets may be relocated quickly and simply in the video surveillance system across situations with 

varying degrees of light and shade. When dealing with complicated scenarios, the standard approach 

of object detection often fails to accurately identify the targets, especially when there are multiple 

categories involved. As data mining techniques have advanced, so too have the benefits of deep 
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learning in terms of how models are expressed. Target detection and behaviour identification are 

two areas where it shines. Deep learning's convolution neural network is particularly resilient to 

Displacement, scaling, and distortion because it relies on local perception, shared weights, and down 

sampling. The convolution neural network (CNN) has developed into a powerful tool for image 

recognition, with applications ranging from vehicle licence plate recognition to facial recognition. In 

this propose a DenseNet – SSD to capture temporal and spatial features from the video. 

 

RELATED STUDY 

The computer vision community has not yet solved the challenge of object detection. Both its 

intrinsic difficulty and its potential for broad application play a role in this. Although there has been 

significant development in the speed and accuracy of object detection frameworks for still images in 

recent years [1], less has been done in the related topic of object detection in the video domain. 

Compared to a still image, a video can tell you a lot more about the subject, including how they 

move and how deep the background is. Any or all of these data sets may be utilised to hone in on the 

target with greater precision. In this paper, we investigate a new approach to improving real-time 

object detectors by using contextual information extracted from videos [2]. In contrast, box-level 

methods utilise the output of object detectors applied independently across several sequential frames 

to perform operations on the resulting bounding boxes. There has been much greater focus on box-

level approaches in the video object detection literature. For instance, Han et al. [3] developed a 

method that uses bounding boxes from numerous frames in place of the traditional Non-Maximal 

Suppression (NMS). Another box-level method for better object predictions is described by Tripathi 

et al. [4], which use a recurrent network to evaluate a series of outputs from object detectors. 

 

Using the results of a single-frame detector, Kang et al. [5] create spatio-temporal "tubelets" that are 

then used to refine box predictions. To generate fresh bounding boxes and class probabilities, Lu et 

al. [6] feed feature maps from a single-frame detector into a recurrent network. All of these methods 

belong to a broader category of box-level methods called tracking-by-detection [7]. These methods 

are based on the fundamental idea of generating tracks by associating detections throughout the 

output of an object detector that has been separately applied to sequential single-frame images. 

These detections are then associated with one another to produce the track. After then, these tracks 

might be utilised to eliminate false positives and bring back any detections that had been missed. 

However, the following features of video data are ignored when object detection is performed 

independently on each image frame: (1) There are feature extraction redundancies between 

neighbouring frames due to the spatial and temporal correlations between image frames. 

Computational inefficiency is sacrificed when features are detected in each individual frame. (2) 

Some frames in a long video stream may have low quality because of factors such motion blur, 

video defocus, occlusion, and position changes. Object detection accuracies suffer when low quality 

frames are used. Strategies for video object detection aim to deal with the aforementioned 

problems. In order to address these problems, we proposed a DenseNet – SSD which captures both 

spatial and temporal features even in the low video streams. 

 

PROPOSED METHOD 

Object detection in single images has recently been shown to be well within the capabilities of deep 

convolutional neural networks (CNNs). We generalise a family of convolutional neural networks 
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(CNNs) originally developed for single-frame picture object detection to cover object detection in 

videos with multiple frames. To improve upon the Single Shot Detector, we developed the 

DenseNet Single Shot Detector (DenseNet - SSD), which uses contextual temporal information 

from video to identify shots. Our model enhances the accuracy of the object detector by adding a 

deep convolutional layer to an SSD architecture, allowing it to merge features across several frames 

and make use of the additional spatial and temporal information available in video data. To preserve 

the remarkable speed of SSDs, our technique employs a fully convolutional network architecture. 

 

DenseNet – SSD 

the SSD algorithm's framework, which consists primarily of two parts. One component is a front-

end deep convolutional neural network that extracts basic features about the target using data 

classified by a VGGNet-16 network (i.e., a VGGNet with a 16-layer structure stripped of its 

classification layer). The other part is a multi-scale feature detection network, which is a cascade of 

convolutional neural networks (CNNs) that uses the feature layer generated by the front-end 

network to extract features under different scale situations. The fully connected layer in YOLO is 

removed by the SSD method, and in its place, multi-scale feature mappings are mapped onto the 

detection layer. This is done to account for the unavoidable reality that the input image contains 

targets of varied sizes. The SSD algorithm employs non-maximal suppression in the layer following 

the detection layer to achieve the best localised value. This is done so that the desired outcome can 

be attained. When the loss value stabilises at a lower level, this shows that the detection model has 

converged, and the loss function is used to assess the discrepancy between the expected and actual 

value of the object. This is how the best detection model is found through iterations of finding the 

best detection model. The loss function in the target detection field is composed of the positioning 

loss of the object as well as the classification loss. Both of these losses add up to the total amount of 

information that is lost. The formula can be divided into the following: 

 𝐿(𝑦, 𝑏, 𝑖, 𝑔) = 1𝑁 (𝐿𝑐𝑜𝑛𝑓(𝑦, 𝑏) + 𝛼𝐿𝑙𝑜𝑐(𝑦, 𝑖, 𝑔)) 
 

Where 𝛼𝐿𝑙𝑜𝑐(𝑦, 𝑖, 𝑔) is the loss of object positioning. 

 

The standard SSD approach is able to identify the item by fusing the conv4 3 layer of VGG16 in 

lieu of the conv 7 layer of the fully connected layer and appending the feature map acquired by the 

four convolutional layers. These three steps are followed by the addition of the feature map. The 

detection outcome is then obtained via the non-maximum value suppression method. By fusing the 

Dense Blocks of the DenseNet network and feeding the output of the three additional convolutional 

layers into the detection layer, the enhanced DenseNet-SSD algorithm was able to get the feature 

maps. This was done to meet the feature map size criteria of the feature mapping layer and improve 

the integration of high-level and low-level information. In addition, the improved algorithm was 

able to obtain the feature maps. The proposed model is shown in Figure 1. 

http://www.webology.org/


Webology, Volume 18, Number 5, 2021 

ISSN: 1735-188X 

DOI: 10.29121/WEB/V18I5/62 

 

 

 

3259                                                                    http://www.webology.org 

 
Figure 1: Proposed DenseNet – SSD 

 

EXPERIMENTAL ANALYSIS 

To begin, we conduct an analysis of how well our methodology performs on the KITTI detection 

dataset. We evaluate the efficiency of our proposed DenseNet-based Single Shot Detector in 

comparison to a baseline SSD that represents the state of the art. The KITTI autonomous driving 

dataset is comprised of variables that significantly from six hours of driving carried out under a wide 

range of environmental and traffic circumstances. The images were taken at a rate of 10 Hz and had 

a resolution of 1242 x 375. The dataset for 2D object detection contains 7,481 training photos and 

7,518 testing images. A bounding box and a class label for one of three classes—cars, pedestrians, 

or cyclists—have been applied to each image in this collection. Unlike other frequently used video 

object recognition datasets, the vast majority of images in KITTI contain examples of numerous 

object types. Furthermore, KITTI is still a difficult dataset for object detection because to the large 

number of small items that are obscured, oversaturated, in shadow, or truncated. KITTI provides 

three additional unlabeled frames for each training image, allowing us to define the multi-frame 

video input, even if the dataset is optimised for single-frame object detection in its original form. In 

order to define train/val splits for our experiments on the KITTI detection dataset, we randomly 

divide the available training data in half. We do an evaluation of each model using the validation 

set, and we compare the results using a standard evaluation metric such as precision, recall and 

mAP. The training and validation accuracy of proposed model is shown in Figure 2. 
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Figure 2: Accuracy of DenseNet – SSD 

 

 
Figure 3: Sample Output 
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Model Precision Recall mAP 

SSD 90.5±0.2% 95% 0.9243 

R-CNN 96.5±0.3% 96% 0.9645 

YOLOV2 96.5±0.5% 93% 0.9345 

DenseNet - SSD 98.5±0.1% 97% 0.9854 

Table 1: Model Comparison 
 

From Figure 3 and Table 1, it can be deduced that when compared to the traditional SSD 

methodology, the DenseNet-SSD method is able to achieve a good compromise between the recall 

and precision rates of various types of object detection. Therefore, the performance of the modified 

SSD algorithm in video object detection is superior to that of the old SSD method. 

 

CONCLUSION 

In this paper, we introduce the DenseNet Single Shot Detector. Notably, adopting DenseNet to take 

use of the additional spatio-temporal characteristics present in video data requires only a little 

adjustment to the standard Single Shot Detector design. A key consideration when dealing with 

video data is network speed, and the completely convolutional nature of the DenseNet-SSD 

architecture ensures that the detection network's runtime is extremely respectable. In addition, unlike 

some other methods, our method does not rely on computing optical flow, which can significantly 

slow down processing time. From the experimental analysis, it is evident that the proposed model 

obtained the better result. 
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